11 research outputs found

    Cortico-muscular coherence in sensorimotor synchronisation

    Get PDF
    This thesis sets out to investigate the neuro-muscular control mechanisms underlying the ubiquitous phenomenon of sensorimotor synchronisation (SMS). SMS is the coordination of movement to external rhythms, and is commonly observed in everyday life. A large body of research addresses the processes underlying SMS at the levels of behaviour and brain. Comparatively, little is known about the coupling between neural and behavioural processes, i.e. neuro-muscular processes. Here, the neuro-muscular processes underlying SMS were investigated in the form of cortico-muscular coherence measured based on Electroencephalography (EEG) and Electromyography (EMG) recorded in human healthy participants. These neuro-muscular processes were investigated at three levels of engagement: passive listening and observation of rhythms in the environment, imagined SMS, and executed SMS, which resulted in the testing of three hypotheses: (i) Rhythms in the environment, such as music, spontaneously modulate cortico-muscular coupling, (ii) Movement intention modulates cortico-muscular coupling, and (iii) Cortico-muscular coupling is dynamically modulated during SMS time-locked to the stimulus rhythm. These three hypotheses were tested through two studies that used Electroencephalography (EEG) and Electromyography (EMG) recordings to measure Cortico-muscular coherence (CMC). First, CMC was tested during passive music listening, to test whether temporal and spectral properties of music stimuli known to induce groove, i.e., the subjective experience of wanting to move, can spontaneously modulate the overall strength of the communication between the brain and the muscles. Second, imagined and executed movement synchronisation was used to investigate the role of movement intention and dynamics on CMC. The two studies indicate that both top-down, and somatosensory and/or proprioceptive processes modulate CMC during SMS tasks. Although CMC dynamics might be linked to movement dynamics, no direct correlation between movement performance and CMC was found. Furthermore, purely passive auditory or visual rhythmic stimulation did not affect CMC. Together, these findings thus indicate that movement intention and active engagement with rhythms in the environment might be critical in modulating CMC. Further investigations of the mechanisms and function of CMC are necessary, as they could have important implications for clinical and elderly populations, as well as athletes, where optimisation of motor control is necessary to compensate for impaired movement or to achieve elite performance

    Neural tracking and integration of 'self' and 'other' in improvised interpersonal coordination

    Get PDF
    Humans coordinate their movements with one another in a range of everyday activities and skill domains. Optimal joint performance requires the continuous anticipation of and adaptation to each other's movements, especially when actions are spontaneous rather than pre-planned. Here we employ dual-EEG and frequency-tagging techniques to investigate how the neural tracking of self- and other-generated movements supports interpersonal coordination during improvised motion. LEDs flickering at 5.7 and 7.7 Hz were attached to participants’ index fingers in 28 dyads as they produced novel patterns of synchronous horizontal forearm movements. EEG responses at these frequencies revealed enhanced neural tracking of self-generated movement when leading and of other-generated movements when following. A marker of self-other integration at 13.4 Hz (inter-modulation frequency of 5.7 and 7.7 Hz) peaked when no leader was designated, and mutual adaptation and movement synchrony were maximal. Furthermore, the amplitude of EEG responses reflected differences in the capacity of dyads to synchronize their movements, offering a neurophysiologically grounded perspective for understanding perceptual-motor mechanisms underlying joint action. © 2019 Elsevier Inc

    Dynamic modulation of cortico-muscular coupling during real and imagined sensorimotor synchronisation

    Get PDF
    People have a natural and intrinsic ability to coordinate body movements with rhythms surrounding them, known as sensorimotor synchronisation. This can be observed in daily environments, when dancing or singing along with music, or spontaneously walking, talking or applauding in synchrony with one another. However, the neurophysiological mechanisms underlying accurately synchronised movement with selected rhythms in the environment remain unclear. Here we studied real and imagined sensorimotor synchronisation with interleaved auditory and visual rhythms using cortico-muscular coherence (CMC) to better understand the processes underlying the preparation and execution of synchronised movement. Electroencephalography (EEG), electromyography (EMG) from the finger flexors, and continuous force signals were recorded in 20 participants during tapping and imagined tapping with discrete stimulus sequences consisting of alternating auditory beeps and visual flashes. The results show that the synchronisation between cortical and muscular activity in the beta (14-38 Hz) frequency band becomes time-locked to the taps executed in synchrony with the visual and auditory stimuli. Dynamic modulation in CMC also occurred when participants imagined tapping with the visual stimuli, but with lower amplitude and a different temporal profile compared to real tapping. These results suggest that CMC does not only reflect changes related to the production of the synchronised movement, but also to its preparation, which appears heightened under higher attentional demands imposed when synchronising with the visual stimuli. These findings highlight a critical role of beta band neural oscillations in the cortical-muscular coupling underlying sensorimotor synchronisation

    Null effects of musical groove on cortico-muscular coherence during isometric contraction

    No full text
    Humans have a natural tendency to move to music, which has been linked to the tight coupling between the auditory and motor system and the active role of the motor system in the perception of musical rhythms. High-groove music is particularly successful at inducing spontaneous movement, due to the engagement of (motor) prediction processes. However, how music listening transfers to the muscles even when no movement is intended is less known. Here we used cortico-muscular coherence (CMC) to investigate changes along the cortico-muscular pathway in response to different levels of groove in music listening without intention to move. Electroencephalography (EEG), Electromyography (EMG) from the finger and foot flexors, and continuous force signals were recorded in 18 participants while listening to either high-groove music, low-groove music or silence. Participants were required to hold a steady isometric contraction during all listening conditions. Subjective ratings confirmed that different levels of groove were successfully induced. However, no evidence was found for an effect of music, even high-groove music, on participants' CMC and ability to maintain a steady force for both upper and lower limbs irrespective of musical expertise. These results thus do not support a top-down influence of groove on cortico-muscular coupling. Nevertheless, it remains possible that such influence might occur in the form of dynamic modulations and/or with more active listening. Therefore, these results encourage further research to better understand the effects of groove on the motor system

    Neural tracking and integration of 'self' and 'other' in improvised interpersonal coordination.

    No full text
    Humans coordinate their movements with one another in a range of everyday activities and skill domains. Optimal joint performance requires the continuous anticipation of and adaptation to each other's movements, especially when actions are spontaneous rather than pre-planned. Here we employ dual-EEG and frequency-tagging techniques to investigate how the neural tracking of self- and other-generated movements supports interpersonal coordination during improvised motion. LEDs flickering at 5.7 and 7.7 Hz were attached to participants' index fingers in 28 dyads as they produced novel patterns of synchronous horizontal forearm movements. EEG responses at these frequencies revealed enhanced neural tracking of self-generated movement when leading and of other-generated movements when following. A marker of self-other integration at 13.4 Hz (inter-modulation frequency of 5.7 and 7.7 Hz) peaked when no leader was designated, and mutual adaptation and movement synchrony were maximal. Furthermore, the amplitude of EEG responses reflected differences in the capacity of dyads to synchronize their movements, offering a neurophysiologically grounded perspective for understanding perceptual-motor mechanisms underlying joint action

    The influence of pacer-movement continuity and pattern matching on auditory-motor synchronisation

    No full text
    People commonly move along with auditory rhythms in the environment. Although the processes underlying such sensorimotor synchronisation have been extensively investigated in the previous research, the properties of auditory rhythms that facilitate the synchronisation remain largely unclear. This study explored the possible benefits of a continuity matching between auditory pacers and the movement produced as well as of a spatial pattern matching that has been previously demonstrated with visual pacers. Participants synchronised either finger tapping or forearm oscillations with either discrete or continuous pacers. The pacers had either a spatial pattern (left–right panning) that matched the movement pattern produced or no spatial pattern. The accuracy and variability of synchronisation were assessed by the mean and standard deviation of the asynchronies, respectively, between participant’s movement and the pacers. Results indicated that synchronisation was more accurate and less variable for discrete pacers and continuous movement (i.e., forearm oscillations). The interaction between those two factors involved a more complex relationship than a simple continuity match benefit. Although synchronisation variability increased with continuous pacers for both types of movement, this increase was smaller for continuous movement than discrete movement, suggesting that continuous movement is more beneficial only for continuous pacers. Moreover, the results revealed limited benefits of spatial pattern matching on auditory-motor synchronisation variability, which might be due to lower spatial resolution of the auditory sensory modality. Together, these findings confirm that sensorimotor synchronisation is modulated by complex relations between pacer and movement properties
    corecore